A novel scorpion toxin blocking small conductance Ca2+ activated K+ channel.

نویسندگان

  • Chen-Qi Xu
  • Lin-Lin He
  • Bert Brône
  • Marie-France Martin-Eauclaire
  • Emmy Van Kerkhove
  • Zhuan Zhou
  • Cheng-Wu Chi
چکیده

Small conductance calcium activated potassium channels (SK) are crucial in the regulation of cell firing frequency in the nervous system and other tissues. In the present work, a novel SK channel blocker, designated BmSKTx1, was purified from the scorpion Buthus martensi Karsh venom. The sequence of the N-terminal 22 amino acid residues was determined by Edman degradation. Using this sequence information, the full-length cDNA and genomic gene of BmSKTx1 were cloned and sequenced. By these analyses, BmSKTx1 was found to be a peptide composed of 31 amino acid residues with three disulfide bonds. It shared little sequence homology with other known scorpion alpha-KTxs but showed close relationship with SK channel blockers in the phylogenetic tree. According to the previous nomenclature, BmSKTx1 was classified as alpha-KTx14.1. We examined the effects of BmSKTx1 on different ion channels of rat adrenal chromaffin cells (RACC) and locust dorsal unpaired median (DUM) neurons. BmSKTx1 selectively inhibited apamin-sensitive SK currents in RACC with Kd of 0.72 microM and Hill coefficient of 2.2. And it had no effect on Na+, Ca2+, Kv, and BK currents in DUM neuron, indicating that BmSKTx1 was a selective SK toxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels

Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide cal...

متن کامل

Structure and function of the potassium channel inhibitor from black scorpion venom

A novel inhibitor of K+ channels has been purified from the venom of the Central Asian scorpion Orthochirus scrobiculosus. For this polypeptide toxin (OsK1) with molecular mass 4205.7 Da complete amino acid sequence was determined by Edman degradation and C-terminal amino acid analysis, and was confirmed by cloning and sequencing of the toxin cDNA. OsK-1 consists of 38 amino acid residues and p...

متن کامل

Recombinant Expression and Functional Characterization of Martentoxin: A Selective Inhibitor for BK Channel (α + β4)

Martentoxin (MarTX), a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch), was capable of blocking large-conductance Ca2+-activated K+ (BK) channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cl...

متن کامل

Unique interactions between scorpion toxins and small conductance Ca(2+)-activated potassium channels.

Small conductance Ca(2+)-activated potassium channels (SK channels) distributing in the nervous system play an important role in learning, memory and synaptic plasticity. Most pharmacological properties of them are determined by short-chain scorpion toxins. Different from most voltage-gated potassium channels and large-conductance Ca(2+)-activated potassium channels, SK channels are only inhibi...

متن کامل

Molecular modeling and docking simulations of scorpion toxins and related analogs on human SKCa2 and SKCa3 channels.

The small-conductance Ca2+-activated K+ (SKCa) channels modulate cytosolic Ca2+ concentration in excitable and non-excitable tissues by regulating the membrane potential and are responsible of slow action potential after hyperpolarization that inhibits cell firing. Among these, human SKCa2 and SKCa3 channels differ in the pore region by only two residues: Ala331 and Asn367 (human small-conducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicon : official journal of the International Society on Toxinology

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2004